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Abstract--A packed bed of particles may be held against the permeable roof of a fluidized column by 
a fluid flux that is several times the minimum fluidization flux. When the fluid flux is suificiently reduced, 
particles rain down and a decompression wave propagates into the packed bed. We report new data of 
the velocity of this wave, summarize previous work and compare with new analyses. The speed of the 
decompression wave cannot be predicted from continuum theories that contain a mutual drag force 
dependent only on the relative velocity and void fraction. Several hypotheses about additional forces are 
used to derive theoretical values of the decompression wave velocity which are compared with data. The 
three most successful hypotheses, which are shown to be roughly equivalent at the higher wave speeds, 
include: a force proportional to the second derivative of void fraction; a discrete averaging method over 
distances scaled by particle size; and a modification to the drag force using the geometrical relationship 
between area fraction and number density. 
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1. I N T R O D U C T I O N  

Fluidized bed technology is widely used in many engineering applications. The phenomenon of 
fluidization can be visualized in terms of  a simple experiment in which a bed of  solid particles is 
supported on a porous plate in a vertical tube. Gas or liquid is forced to flow upwards through 
the plate and through the particle bed. This flow causes a pressure drop across the bed and when 
this pressure drop is sufficient to support the weight of the particles, the bed is said to be incipiently 
fluidized and the "minimum fluidization flux" (volumetric flow rate divided by the tube's 
cross-sectional area) is J,,I" A further increase in the flow causes the bed to expand. The fluidized 
bed thus formed has many of the properties of a liquid; its upper surface remains horizontal when 
the containing apparatus is tilted; and it hardly impedes the movement of objects within it or 
floating on the surface. If  the flow of gas or liquid is increased still further, to the point at which 
the flow velocity becomes greater than the free-falling velocity of  the particles, v~, they are carried 
out of  the apparatus. 

In a fluidized bed, particles are suspended in a stream of moving fluid, and buoyancy and 
drag forces combine to balance the weight of the particles. If  the velocities are relatively low and 
the duct sufficiently large, wall friction may be neglected and the relative motion is thus only 
a function of the local concentration, system properties and the gravitational field. For a 
uniformly fluidized suspension in one-dimensional vertical motion, the balance between forces due 
to gravity, drag and pressure gradient has been represented by various recipes over the years 
(e.g. Richardson & Zaki 1954; Simpson & Rodger 1961; Wen & Yu 1966; Wallis 1969, 1977; 
Gibilaro et  al. 1985). However, it has been predicted for decades (e.g. Murray 1965; Jackson 1963; 
Wallis 1969) that fluidized beds that are only subject to such forces are inherently unstable and 
will operate in some intermittent non-uniform regime, often characterized by "bubbles" of fluid 
surrounded by a more-or-less uniform, but agitated, dispersion. Since some fluidized beds do 
operate in a very uniform, regular fashion, several authors have speculated about mechanisms 
to produce this stability (e.g. Jackson 1963; Wallis 1962; Foscolo & Gibilaro 1984; Batchelor 
1988). While some of  these approaches are partially successful at predicting the stability limits of  
uniform fluidization, no definitive and convincing proof  of the mechanisms p e r  se has yet been 
presented. 

A related problem is how to express the basic conservation laws for non-uniform or intermittent 
motion of particle dispersions. Various "forces" have been postulated and estimated in the 
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momentum balances and occasionally there have been attempts to correct the continuity equation 
(Singh & Joseph 1991), but there is a very small basis of experimental data that unequivocally tests 
and quantifies these various hypotheses or predictions. 

This paper is concerned with a particular phenomenon, easily set up in a laboratory, that existing 
theories have difficulty predicting. This "decompression wave" occurs when particles detach and 
"rain down" from the bottom of a close-packed region which may either be held stationary against 
a grid or may be moving as a "slug" in a naturally intermittent fluidized bed. Within this wave 
there usually are: 

• Large changes in void fraction over lengths comparable with the particle size. 
• Significant inertial effects. 
• Regions where the net forces on the particles, predicted by the usual "drag" 

correlations, together with buoyancy and gravity, act in a direction opposite to the 
particle acceleration. 

After describing this experiment and some data, we will examine several hypotheses that have 
varying success at explaining them. 

2. DECOMPRESSION WAVES 

We consider (figure 1) an initial state in which a stack of particles is held against the permeable 
top of a vertical column by a large upwards flux of fluid. 

The fluid flux is then suddenly reduced and held constant at a given valuejjo. Ifjj~ is sufficiently 
low, yet high enough to maintain the stack packed against the permeable grid, particles are able 
to fall from the bottom layer of the stack. As particles fall off the bottom of the stack, the interface 
between the falling particle region and the packed section propagates upwards at more or less 
constant velocity, Vdw, which will be called the "decompression wave velocity". In our experiments, 
this velocity was determined by timing the interface between two marks on the tube set 300 mm 
apart. 
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Figure 1. Sketch of decompression wave propagation. 
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Experimentally, it is observed that decompression waves occur as described for 

j , . /  <~ j / ,  <~ yj , . /  . 

Empirically, 3" varies within the range 1.4 to around 3. 
IfJlo <Jml, the whole packed section falls, whereas if j/, > yj,,/, there is no movement. 
Our experimental apparatus is illustrated in figure 2 and had as its major features a test section 

made from cast plexiglass tubing, 76 mm i.d. and 1.5 m long, delimited by two stainless-steel 
mesh retaining grids. It was preceded by a 300 mm long calming section. In order to enable the 
experiment to be prepared (i.e. stacking the particles against the permeable top of the column) 
without resorting to high fluid flow rates, the entire section could be inverted by pivoting about 
its middle. Further details are given by Harvey (1991). 

The minimum fluidization velocity was estimated in two ways: in the usual manner, 
from visual observation of initial bed expansion; and also by noting the fluid velocity at 
which the decompression wave experiment gave rise to an initial downwards movement of the 
entire packed section. Good agreement was found between these alternative methods. It was 
found that the maximum "allowable" particle size was 8 mm. Larger particles tended to get 
jammed in the tube as a result of  their diameters being relatively large compared to the tube 
diameter. 

A typical plot of  the decompression wave velocity vdw as a function of  the relative flow ratej#/L,/ 
is shown in figure 3. The gap in the data for low fluid fluxes is due to the practical difficulties 
associated with visual tracking of waves moving at such high velocities. 

For large particles (higher Reynolds numbers), the interface was observed to remain horizontal 
and propagate upwards at an essentially constant velocity, whereas with smaller particles, behavior 
tended to be more complicated: three-dimensional effects such as swirling and churning appeared; 
the interface was no longer horizontal and the wave velocity became irregular. These irregularities 
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could be partly reduced by setting up the experiment so that a fluidized bed existed in the lower 
parts of the tube with the top of its surface close to the bottom of the stack. 

Wallis (1962) performed similar experiments three decades ago in an effort to measure the 
effective "compressibility" of a fluidized suspension and relate it to the stability of  uniform 
fluidization. He plotted his results in dimensionless form using semi-logarithmic coordinates 
(figure 4; the index " a "  appearing in the abscissa on this graph is defined in [9]) and was particularly 
interested in the limiting behavior near jfa/jm:= 1. A similar approach was taken in a series of 
experiments by Gibilaro et al. (1989, 1990). 

During a sojourn at University College, London in 1990, one of the authors (R. DiFelice) 
obtained the data shown in figure 5. The systems consisted of spherical particles of various 
materials and diameters fluidized by water. The decompression wave speed was made dimensionless 
by dividing by u~, the terminal speed of  a single particle falling in a stationary fluid. The open 
symbols and the data for lead shot correspond to one-dimensional behavior with a clear wave front. 
The closed symbols represent much more irregular multi-dimensional behavior and are an average 
of  the speed of the location at which some particle motion was first detected over a long length 
of the tube. 

In the apparatus sketched in figure 2, Harvey (1991) performed experiments with glass spheres 
of  diameter 8, 6, 2, 1 and 0.42 mm in water, spanning the range from completely one-dimensional 
to mostly multi-dimensional behavior. 

The data that we have examined are generally consistent with each other. Moreover, dimensional 
analysis suggests that only two additional parameters (e.g. pJpf,  the density ratio, and the 
Reynolds number for a single particle falling in an infinite fluid, Re~) are needed to correlate data 
such as that presented in figure 5. Therefore, the quest for a comprehensive explanation would 
appear to have a fair chance of success. Our various explorations along the way will now be 
described. 

3. T H E O R Y  

3.1. General 

The starting point for analysis will be the one-dimensional equations for conservation of mass 
and momentum for incompressible phases given by Wallis (1969). Since we shall analyze waves in 
a coordinate system which brings them to rest, we only need the steady-flow versions. Later, 
modifications will be considered which may be appropriate. 

The continuity equations are 

js = us(1 - e )  [1] 
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Figure 3. Decompression wave: typical data (8mm soda glass particles). 
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Figure 4. Data of  Wallis (1962). The index a is defined in [9]. The ballotini were glass balls and all the 
particles were nominally spherical. 

and 

j f  = vfe, [21 

and the equations of motion are written as 

dv~ dp 
P~v'-~z = dz + gP~ + f~ [3] 

and 

dr/ dp + g&+f/ .  [4] 
Pfvf-~z = dz 

The "pressure" appearing in [3] and [4] is a suitable mean pressure in the fluid as measured, for 
example, by a pressure tap; in general, its gradient produces similar effects on both phases. All fluid 
dynamic forces that are not contained in dp/dz appear in f / a n d  f~; the commonest of  these are 
"mutual" forces which act in opposite directions on the phases. A recipe for these mutual forces 
in a steady fluidized bed composed of  spherical particles is given by Wallis (1969) as 

f~ f f  3 _ z 7 ( v f - v s ) l v f - v s l  
= - l - = c a ,  a ' [ 5 ]  
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where Cos is a function of a Reynolds number, 

Res - pre Iv1- vsld 

and a typical correlation is 

24 
Cos=;,---(1 +0.15Re~687); Re~< 1000 

Kes 

and 

[6] 

[7] 

Cos = 0.44, Res > 1000. [8] 

Alternatively, a fit may be achieved over a limited range in the form 

Cos = A Re a, [9] 

where " a "  depends on Res. 
This mutual drag force is not the only "component" o f f  I and f~. Indeed, later paragraphs will 

feature hypotheses about additional terms (which cannot necessarily be treated as linearly additive). 
For the moment we proceed by subtracting [4] from [3] and including an estimate of the "added 
mass" effects from potential flow theory (Wallis 1990) to obtain 

dvs dv I . 3 27- (v/- v~)lv/- vsl (Psd-CPf)V'-~z -(Pf-t-CP/)vf-~z = g ( P s - - P l ) + 4  e -  ' t '°spf  d +etc. ,  [10] 

where  C = 1/2 for spheres.  I f  ps ~> Pi, it m a y  be sufficient to cons ide r  on ly  the ine r t i a  t e rm for the 
sol ids o n  the  l e f t -hand  side (LHS)  o f  [10], which  t hen  resembles  the e q u a t i o n  o f  m o t i o n  [3] wi th  
[4] used  to eva lua t e  dp/dz. 
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Figure 6. Drift flux curve for 325/~m copper spheres in water at 10°C: • , [10]; .... , [14] with 
v~ = 14.6cm/s, n = 3.5. 

The  expansion characterist ics o f  a un i form fluidized bed in steady state m a y  be derived f rom [10] 
by put t ing the L H S  to zero. The  particles are at  rest (v, = 0) and the fluid flux is given by [2]; 
therefore,  if  [9] is used, we obta in  

3 (p:lj:la]o (-J:)lJ l 
g ( p , -  p~) = ~A \ - - - - ~  / p:-'-~ d ' [11] 

where Jl is negative. The  result o f  rearranging [11] is 

- j f  = v~ e 4"7/(2 + a), [ 12] 

where vo~ is the terminal  velocity o f  a single particle and  is equal to ( - J l )  when E = 1. 
Equa t ion  [12] has the fo rm o f  the Richardson  & Zaki  (1954) correlat ion,  in which the index is 
expressed as 

4.7 
= [131 n 2 + a "  

It  m a y  also be writ ten in terms of  the "dr i f t  f lux" 

j,:=j: - i f ( 1  -- e) = v~(1 -- e)e", [14] 

which represents the volumetric flux of the solid phase (or minus the volumetric fluid flux) relative 
to the overall flux: 

j =j,+j/. [15] 

Figure 6 shows the drift flux for copper spheres, 325 #m dia, computed from [I0] using [7] and 
[8], or fitted by [14] with vo~ = 14.6 cm/s, n = 3.5. The curves stop close to e = 0.4, where the 
particles rest on one another. From the form of [I0] we can see that when the drift flux exceeds 
the value on the curve in figure 6 at a given ~, the net hydrodynamic force on the particles will 
exceed their buoyant weight; while the converse will be true below the curve. 

We will now proceed to analyse decompression waves using different assumptions about the 
" fo rce"  terms. 

3.2. Continuity waves 

Cont inui ty  (kinematic)  waves are one-dimensional  p h e n o m e n a  governing transient  behavior  
when inertial effects can be neglected, either because they are small or  because they are damped  
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out by viscous dissipation. They are quasi-equilibrium phenomena, implying that the balance of 
forces in the wave is essentially the same as it is in a uniform suspension under the same local 
conditions. Gradients, and higher derivatives, of  properties such as velocity and concentration exert 
no influence. Continuity wave theory is a well-established way of analyzing sedimentation and foam 
drainage phenomena as well as many transients and limiting conditions in bubble columns and 
fluidized beds. 

For a uniformly fluidized suspension in one-dimensional vertical motion, the balance between 
forces due to gravity, drag and pressure gradient can be represented by the equilibrium drift flux, 
as in [14]. 

The speed of continuity waves (Wallis 1969) is 

dj# [16] 
vw = j  de 

and the speed of  finite discontinuities (continuity shocks) between states "1"  and "2" is 

Vs = j  (J#), -- (J,f)2, [17] 
£I -- ~2 

where the overall flux,j, that is independent of z in an incompressible system with no phase change 
or reaction, is given by [15]. 

Equations [16] and [17] both have simple graphical interpretations on a plot ofjs: vs e. 
For  hard particles, [14] is only valid at void fractions above a critical value e0 ( ~  0.4 for spheres) 

at which the particles randomly pack together. Particle-particle forces in a stationary packed 
assembly make it possible for the resultant force from the fluid to differ from the weight of  the 
particle, exceeding it ifjs s exceeds the value given by [14], with e = e0. 

Using [14], we may explicitly evaluate the second term in [16] as 

~ ' =  v~.e" I[n(1 -- e) -- ~]. [18] 

For  systems of  uniform spherical particles, n varies in the range 2.35--4.7, depending on the 
Reynolds number of  the relative motion. 

In what follows we will make all velocities dimensionless by dividing by v~, thus: 

j ,  L , Vw 
= - - ,  v , . = - -  etc. [19] 

/):c V~ 

3.3. Decompression waves from continuity wave theory 

We consider an initial state in which a stack of  packed particles is held against the permeable 
top of a vertical column by a large upward flux of  fluid. The fluid flux is then suddenly reduced 
and held constant at a (negative) value Jsa at which particles are able to fall from the bottom of 
the stack. In the stack itself we have Js = 0, j/=J/a, e = e0 and the "state" is represented by point 
" a "  in figure 7. 

At the bottom of the stack the entire range of void fractions from e = e0 to e = 1 are initially 
present and each will try to propagate at the speed given by [16]. Since the lowest concentrations 
propagate (downwards) the fastest, they will escape from those following them and form an 
expansion wave with its leading edge moving at a speed equal to v~ +Jsa. 

In order to complete the range of  e from e = 1 down to e = e0, there must be a "shock" from 
point " a "  to some point on the curve. If this point is to the left of the point of contact of  the 
tangent from " a "  to the curve (at e = e~ ), part of  the shock will break off as an expansion wave, 
moving the point representing the state below the shock to the right. On the other hand, if this 
point is to the right of the contact point, continuity waves adjacent to the shock will catch up 
with it until the one below the shock is moving at exactly the shock speed, i.e. the shock is 
represented by a tangent to the curve. We conclude that the states in the expansion wave and at 
the end of  the shock must be as indicated in figure 7. The corresponding profile of  e vs z is shown 
in figure 8. There is one wave, with e = e2, which is actually stationary since the two terms in [16] 
cancel. 
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Figure 7. "States" in the drift flux diagram. 

We define the velocity of  the "decompression wave" as the velocity with which the top of  this 
wave structure propagates into the stack of  stationary particles. For the situation illustrated in 
figure 8, this is the velocity of  the shock from e = el to point "a". If n < 2.33, which apparently 
never happens for fluidized beds of  uniform spherical particles, the limiting case as J/a approaches 
Jmi, the minimum fluidization flux, is the continuity wave velocity at e = e0. Normally, the velocity 
is more negative (larger speed) because the shock has a steeper negative slope. 
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Figure 9. Graphical construction to determine Y in [20]. 

The decompression wave velocity can be straightforwardly derived by analytic or geometrical 
methods. Referring to the parameters indicated in figure 9, the shock velocity from " a "  to 
t = t l  is 

vs = Jfa + slope of the shock line 

Y 
=J:°+ 

- [ - (1  --~o)J:a--Y] - r  
= [ 2 0 ]  

1 - -  to  1 - -  t o '  

which is easily constructed graphically. Since Y is positive, the wave speed is negative; i.e. the wave 
moves upwards. 

An analytical solution may be obtained using t| as a parameter. From geometry and use of [14] 
and [17], we get 

Y* = j ~  + (1 - - t , )  d j~  
dr! 

= n ( 1 -  tl)2tg i, [21] 

y *  
j ~  - -  + t ~ ' -  t [ n ( l  - t t )  - t l  ] [ 2 2 ]  

l - e 0  
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Figure I0. Prediction of decompression wave speed from continuity wave theory for various values of n. 

and 
y*  

= = [23] v* v~  1 --eo" 

The dimensionless minimum fluidization flux follows from [14] with Js = 0 and e = e0, 

--J*l = eg" [24] 

• . - -  " ~  ° ,  These equations were used to construct a plot of  v*. = Vd~/V~ VS Yla/JmI--Jla/Jml for a series 
of  values of  n (figure 10). When these results are compared with data, such as was presented in 
figure 5, it is found that decompression waves which appear one-dimensional always propagate 
slower than would be predicted from continuity wave theory. Decompression waves which 
propagate faster than this theory predicts are all multi-dimensional in character. 

Since one-dimensional decompression waves propagate slower than the maximum speed set by 
continuity wave theory, some other effects must influence their motion. Before investigating several 
hypotheses about such effects, we will present a qualitative analysis of  what some of  their properties 
must be. 

3.4. Other effects 
Continuity wave theory ignores inertia effects and the influences of  property gradients. This is 

justifiable as long as the wave is " long" and overall balances can be made between quasi- 
equilibrium states on either side of  it. Of  course, inertia is always present and complete force 
balances must contain a component to account for it. From another point of  view, states which 
do not line on the Jsf curve, representing a balance between gravity and drag, must be subject to 
other forces or inertia effects which complete the momentum balance. 

This logic may be applied qualitatively to the theory in the previous section. It is easiest to 
analyze the situation after the wave has developed for some time and conditions are "steady" in 
a coordinate system moving with the wave speed. 

It is still possible to represent the entire wave as a transition from some state " a "  in the 
compacted particle stack to another "equilibrium" steady state " c "  far below where the forces are 
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again in balance. Equation [17], between these states, still describes the wave speed. In reality this 
" jump"  must have an internal structure on a suitably small scale. 

For  convenience, a steady flow situation is achieved by imposing a velocity--Yd,, on the situation 
considered before (figure 11). The overall flux is now 

The flux of  solids is 

and the fluid flux is 

j = j s a - V d w .  [25] 

L = - va.,( 1 - e0) [26] 

h =Jfa - eoVdw. [27] 

We are still using the convention that the positive direction is given by v~ and will be downwards 
for P~ > PI" 

Since all of  these fluxes are constant, in this steady flow situation, only one independent variable 
is needed to define the local state and may be chosen as e. The phase velocities are 

-yaw(1  - ~o) 
[28] v~= 1 --~ 

and 

Jfu ~0 Vdw 
v r = [29] 

8 

and the drift flux is 

j ~ t = j ~  - j ~ ( l  - e) = L  - j ( 1  - e) = - v u . . ( l  - e) - j ( l  - ~). [30] 

As ~ varies, the drift flux depends linearly on a and may be represented on the (J~t, e) plane as a 
straight line (figure 12). The states within the wave (no longer regarded as a discontinuity, but 
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Figure 12. The series of "states" in the wave. 

lye 

magnified to reveal its structure) proceed along this straight line from the packed bed at " a "  
to another uniform state "c" ,  below the wave, which lies on the force balance curve described 
by [14]. The largest possible value of -v~.  (v~ is negative) is obtained where [30] is a tangent 
to this curve, as derived previously. If  there are other limiting factors (as experimental 
evidence indicates) the wave speed will be less and [30] will cut the curve twice, at " b "  and "c" 
in the figure. 

It is now pertinent to inquire how the local momentum balance works out at points in the wave. 
In a uniform flow, drag forces increase with J~I, at constant 5; therefore, at points lying above the 
curve in figure 12 the net force on a particle will be upwards (for p~ > Pl)- Along the portion ab 
of the line representing the series of states in the wave the net force is therefore in a direction 
opposite to the particle acceleration, a situation that is physically incongruous and can only be 
legitimized by the intervention of some other "force". While several candidate forces have been 
hypothesized, none has yet been clearly established as existing. In view of the behavior of continuity 
waves at the lower end of the overall expansion wave, it is likely that the region of uniform flow 
below the wave will correspond to point "c" ,  but the "potential barrier" in the region ab must 
somehow be overcome on the way. 

3.5. Force proportional to de/dz--hypothesis 1 

One candidate for the role of supplementary force mentioned above is an effective compressibility 
of the particle matrix manifested as a force on particles in a void fraction gradient. Several 
phenomena could contribute to such an effect, including particle-particle forces, fluctuations in 
particle motion and effects on drag due to relative acceleration (which can be estimated for the 
high Re case using boundary layer theory). Any effect of hydrodynamic origin must also depend 
on the relative motion and other "objective" parameters that are independent of the coordinate 
system. 

If  there is a "force due to voidage gradient" which can be added to the drag force in [10] 
(at best a first approximation but not implying any general principle of superposition), the latter, 
with fluid inertia ignored, takes the form 

dvs ~7 3 (v~- vr) lv~- Vfl de 
p~V~z =g(p~--pf ) - -5-  ' Cm-~pf d +k-~z'  [311 

where k is positive and depends on 5, (vs-  vf) and so on. 
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Since v~ and vy are both derivable as functions of s from [17] and [2], [31] becomes a differential 
equation to be solved for s. Using [1] on the LHS, we obtain 

- 2 . 7  C 3 l de g ( p ~ -  p f ) - - s  os~Pftl)s--t)f)lVs--l)fl 
dz pv~ [32] 

- -  - - k  
l - - e  

The numerator in [32] is the difference between gravitational and viscous effects referred to 
previously. The presence of k in the denominator allows the sign to change depending on the 

z and relative magnitudes of vs 

c 2 _ k ( 1  - - s )  
- - ,  [331 

P 

which plays the role of  the square of the "compressibility wave speed". Indeed [32] has the same 
form as the "backwater curve" equation in open channel flows and analogous equations for 
compressible flow in ducts. 

This theory now offers an explanation of how the "state" can pass continuously from " a "  
2 to " c "  in figure 12. In the region ab, v s < c 2, the denominator is negative, the numerator is 

negative because drag exceeds weight, and ds /dz  is positive, as required. At the point "b "  
both the numerator and denominator are zero, corresponding to a critical condition. In the 

2 region bc, vs > c 2, the denominator is positive, the numerator is positive and de/dz  remains 
positive. 

In the limiting condition where point " a "  lies on the equilibrium drift flux curve (i.e. Jr~ =J,¢), 
points " a "  and "b"  coincide at the critical condition. Moreover, from [28], vs = - v ,  and we 

2 conclude that v w = c 2, indicating that the dynamic wave speed can be measured by a decompression 
wave experiment performed with a fluid flux equal to the minimum fluidization flux, an assertion 
made many years ago (Wallis 1962), but not put into explicit mathematical form. 

One reasonable hypothesis about the form of  " k "  is that the hydrodynamic forces due to voidage 
gradient should be proportional to the steady flow value. In this case the interaction force in [10] 
becomes 

_3 (vs - vi)lv, -- vii 1 [34] L -s-2"TCos 4 Pr d dz ]" 

The inclusion of  the factor " d "  in the final term is justified by considerations of geometrical 
similarity. When [34] is used in place of the corresponding terms in [31] and both the numerator 
and denominator of  the resulting equivalent of  [32] are equated to zero at the critical point, we 
obtain 

2 c2 = k(1 - s ) d g ( p s -  pf) [35] 
P~ 

resembling some expressions to be found in the literature, having k of  the order of 1. Equation 
[35] appears consistent with data near the minimum fluidization point in figure 4. 

Equation [32] is a differential equation for s which can be solved numerically to obtain the wave 
shape. In order for the solution to proceed continuously through the critical point "b" ,  the 
numerator and denominator must pass through zero simultaneously. One solution strategy, 
therefore, is to assume reasonable values ofjs and j l in  the frame of  reference which brings the wave 
to rest, start the solution at z = 0, s = s0, and integrate forward in z. I f j i  is too low, for a given 
j, ,  the denominator is found to go to zero before the numerator and the solution "blows up" before 
b is reached. On the other hand, too high a value of  j i  makes the numerator zero first and the 
solution stops at b with no further changes. Only a certain value o f j i  at given j~, allows continuous 
passage through state "b"  and on to state "c" .  A typical solution for copper spheres of  325/~m dia 
in water at 10°C and k = 0.43, Js = 1.5 cm/s, j i  = 0.447 cm/s is shown in figure 13 and the solution 
is developed to greater values of  z in figure 14. For these conditions we may use [24]-[26] to obtain 
j i~/j , i= 1.14 and Vd,,/V~ = 2.5/14.6 = 0.171, which is about 70% of  the wave speed predicted by 
continuity wave theory under the same conditions. 



D E C O M P R E S S I O N  W A V E S  IN F L U I D I Z E D  BEDS 8 5 3  

0.44 

0.4 0 

m 

j f  = 0.447 

I 
0.0015 

j f  = 0.45 

z (era) 

Figure 13. Numerical solutions to [32] for copper spheres (d = 325/~m) in water, using k =0.43, 
Js = 1.5cm/s. The curves are for j / =  0.44 to 0.45 step 0.001 cm/s. Only jz= 0.447 allows smooth passage 

through point "b" .  The curves for jy< 0.447 stop because dE/dz becomes large. 

The above method may be used to predict the entire dependence of the wave speed on the applied 
fluid flux, once some assumption is made about the parameter "k" .  Fortunately, however, it is not 
necessary to solve [32] and search for solutions passing through b since an approximate analytical 
solution is possible if [35] is invoked. 

At the critical condition the denominator of [32] is zero and, therefore, from [35] and [1]: 

Js = (1 - eb)3/2U, [36] 

1.0 

0.8 

0.6 

0.4 

/ 

0 0.02 
I 

0.04 

z (era) 

Figure 14. The solution in figure 13 developed to large values of  z. The bifurcation point " b "  occurs close 
to the start (top) of  the wave. 
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Figure 15. Determination of the "critical" condition at point "b". 

"Jfa 

where U is a "character is t ic  velocity",  

U ~kgd(~--Pf)]  '/2 = - . [37] 
L & 

Therefore  j ,  can be determined as a function of  eb. The  wave speed follows f rom [26]: 

J~ 
- [ 3 8 ]  

- -  Y a w  1 - -  e o" 

N o w  

F r o m  the geomet ry  o f  figure 15, 

and 

(Jsl), - L  = (Jsi)b - - Z  [39] 
1 - -  e o  1 - -  eb 

(Jsf)b = vo~ (1 - eb)e~ [401 

(J,:)a = --jfa(1 -- eo). [41] 

Therefore ,  using [36], [40] and [41] in [39]: 

_ j / ,  = (eb -- e0) (1 -- eb)l/2 U + v~e~. [42] 
1 - -  e0 

Equat ions  [38] and  [42] may  be made  dimensionless and used to make  a plot  such as figure 16. 
The  predict ions for  cons tant  k all lie below the cont inui ty wave limit and cont inue to much  
higher values ofj,/Jml than are observed in practice. Cont inua t ion  of  the curves below j,/jmi= l 
is physically unrealistic, as are the results for large values of  k which cor respond to intersections 
" b "  in the " c "  posit ion. 

This analysis m a y  be extended to incorpora te  the addi t ional  terms, representing fluid inertia, 
on the L H S  o f  [10]. When  they are included, it turns out  that  the critical condi t ion [35] is 
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Figure 16. Prediction of decompression wave speed from "effective compressibility". 0.325mm copper 
spheres in water: , k = 0.1 to 3 step 0.4; - - - ,  the continuity wave theory. 

replaced by 

(p, + Cpf) (~_ ~)3 + (pi+ Cp:)~ = kdg(p,- py), [43] 

which is to be solved simultaneously with the condition that point " b "  lies on the equilibrium drift 
flux curve defined by [14]: 

L t  --ji(1 - s) = v~(l -- s)sL [44] 

Using s as parameter, [43] and [44] may be solved for j ,  and j/which are used in [38] and [25] 
to obtain Vdw and j/a. Figure 17 compares this prediction, using C = 0.5, with the result obtained 
ignoring all terms involving p/on the LHS of  [43], which gives predictions identical with [38] 
and [42]. For  the case of  325 #m copper particles in water there is little difference between the 
two cases. 

The predictions of  this theory with a constant "compressibility coefficient", k, all give results 
extending to values ofj:,~/j,,,: far beyond the range of the experimental data. A fit might then be 
sought by a suitable variation of  k with the parameters of the problem. For  example, a dependence 
on solids concentration might be tried in the form 

{ 1 --s'~ b 
k =ko~_~o  ) , [45] 

which has the effect of  making compressibility proportional to solids fraction raised to the power 
"b" .  The effect is not very encouraging if liquid inertia and added mass effects are excluded 
(figure 18). When these effects are included, it is possible to cover the data range for a given 
particle-fluid system (e.g. figure 19), but the magnitude of  the index " b "  that is required indicates 
a very strong dependency of  compressibility on particle concentration. 

While this theory might be used to fit decompression wave data, it must be regarded as tentative, 
in the absence of  more direct measurements of  the compressibility, if it exists. Moreover, the 
solutions contain two features, evident from figure 14, that challenge the basic assumption that 
the dispersion can be treated as a continuum: 

• The slope ds/dz is discontinuous where the bottom of  the solid stack of  particles 
meets the top of the decompression wave. Individual particles physically bridge 
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Figure 17. Effect of  added mass and fluid inertia. 0.325mm copper spheres in water, k = 0.43: - -  
particle inertia only; "", included added mass and fluid inertia. 

this discontinuity, yet their acceleration takes a step jump as their centers pass 
through it. 

• The extent of the region of rapid acceleration is comparable with the particle size. 
For example, in figure 14 the void fraction changes from 0.4 to about 0.75 in a 
distance equal to the particle diameter, 0.0325 cm. The initial bifurcation point is 
reached when the particle has traveled about 3% of its own diameter! Perhaps a 

°-2 F 

8 0.1 - 

5 

o I I I 
2 3 4 

Figure 18. Compressibility described by [45]. 0.325mm copper spheres in water, k = 0.43; particle inertia 
only. 
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Figure 19. Compressibility described by [45]. 0.325mm copper spheres in water, k = 0.43. Added mass 
and fluid inertia included: x, data of R. DiFelice (personal communication). 

different approach is indicated when such large property changes occur on the scale 
of the individual particles. 

3.6. Discretized model--hypothesis  2 

Indications that the void fraction changes significantly over the length of one particle within the 
decompression wave leads to basic questions about how the effective force on these particles is to 
be calculated. The approach described by Harvey (1991) is based on the idea that this force is 
determined by the relative velocity and the proximity of particles upstream and downstream of 
a given particle which is being "followed" by analysis. The effective void fraction for use in 
computing the mutual drag is some suitable average of the mean spacing of particles upstream and 
downstream from the particle under consideration. 

Harvey (1991) followed the trajectories of a succession of typical particles using [10] without any 
additional terms and neglecting the fluid inertia term. Since only the particle velocity was of interest, 
the relative velocity was expressed in the equivalent form 

j - -  U s 
v / -  v, = - - ,  [46] 

which is reminiscent of substitutions in terms of various relative velocities in the mutual diffusion 
of gas pairs (Bird et al. 1960). The equation to be solved is then 

3( z) d2z - ~ ~ + e -4.7 Co, ] (p,  + Cpf) ~ = g(Ps ~,/, ,fr j - j - [47] 

where z is the coordinate along the trajectory of a given particle and e,~ is an "effective" void 
fraction. The approach is to label a series of equidistant particles, with separation (Az)~ in the 
"packed bed" above the wave, and to follow the path of each one as it detaches and falls through 
the decompression wave (figure 20). 

It seems reasonable to assume that (Az)pb is of the order of a particle diameter, since this is the 
scale of the "range of influence" of a particle, and we may choose to write (Az)p b a s  

(Az)~ = ksp d. [48] 

IJMF 19/5--I 
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Figure 20. Nomenclature for the discretized model. 

It is not clear what value should be assigned to ksp. Visual observation suggests that particles fall 
off the bottom of  the stack more or less one at a time rather than in large "clumps" or "clusters". 
We are therefore motivated to choose ksp based on the distance between two adjacent layers. 
In a close-packed bed, use of geometry leads to 

ksp = 0.8165. [49] 

In all calculations made in this study, this close-packed value for ksp is used. However, in a real 
randomly packed stack of particles, it might be argued that a range of values for ksp, of order 1, 
is plausible. In effect, ksp defines a "step size" for the spatial discretization of  the void fraction 
profile and it is important to assess its influence on the predicted wave velocities. Figure 21 shows 
results obtained using the model outlined in Harvey (1991). Two cases are shown in the figure: a 
high Re~ case (Re~ = 3300; 6 mm lead glass particles in water; Ps = 2900 kg/m3; j:,/j,,:= 1.1); and 
a low Re~ case (Re~ = 29; 425/~m lead glass particles in water; ps = 2900 kg/m3; j/a/j,,/= 1.1). 

1.4 
Re = 3300 

1.2 - -  

1.0- 

0.8 

0,6 

0.4 

0.2 

o.o I I I 
0.0 0.5 i.o 1.5 2.0 

Spatial Diseretization Factor km 

Figure 21. Influence of the spatial discretization factor k,p on predicted wave velocities. 
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For comparison purposes, the wave velocities Yd,, are scaled by (Vd,.)cp, the latter being the wave 
velocity obtained for ksp set to the close-packed value. 

The figure shows clearly that for larger Re~ the predicted wave velocities are more sensitive 
to variations in the spatial discretization factor ksp than for lower Re~ values. Indeed, unless ksp 
is unreasonably small, the predicted wave velocities for the small Re® case do not vary much with 
k,p. Figure 21 shows that within reasonable limits, variation of  k,p influences the predicted wave 
velocities by no more than 10-20%, which is adequate for the first-order type analysis made. We 
will retain for the remainder of  this paper the close packed value k,p =0.8165. In a more 
comprehensive study it might be possible to optimize the choice of  ksp. 

Figure 21 also shows that, as k,p~0, the predicted wave velocities drop rapidly towards a 
"stationary wave", corresponding to a situation with no movement of  particles at the bottom 
of  the stack. This limit corresponds to the continuum description of the decompression wave 
experiment. As expected, the wave velocity tends towards zero since a continuum descrip- 
tion is unable to predict decompression wave behavior unless extra "force components" are 
introduced. 

Referring to figure 20, we have the following kinematic description of the motion: 

• z~ refers to the z location of  the characteristic particle " i" .  
• (Az,)~ and (Azd)i refer to the distances between the characteristic location " i "  and 

the adjacent characteristic locations with indexes "i  + 1" and "i - 1", respectively. 
Subscripts "u"  and " d "  refer to the upstream and downstream conditions, so that 
we have 

(Az~)~ = z , +  ~ - z~ [50] 

and 

(Az~)~ = z~ - zi_ l- [51] 

If we know the void fraction ~0 corresponding to packed bed conditions, we may evaluate the 
equivalent upstream and downstream void fractions as follows: 

(eu), = 1 - (l - So) kspd [52] 
(az.)~ 

and 

(ea)i = 1 - (1 - e0) kspd [53] 
(Aza)i '  

The key question now is how the net force on the particle is to be computed from (e~)~ and 

Harvey (1991) tried various approaches. One was to assume an effective void fraction given by 
a linear combination 

ecer = fl~u + (1 - fl)aa. [54] 

Comparing predictions with his data for 6 mm lead glass particles fluidized with water, Harvey 
found that fl = 0.5 only gave reasonable results at the higher wave speeds. A much lower value 
of  fl was needed to predict the condition where the wave speed drops to zero (figure 22). 

Using arguments about the mechanics of  drag in an assembly, Harvey argued for a non-linear 
averaging procedure of  the form 

~o~ = / ~  + (1 - / ~ ) ~ .  [551 

Good results were obtained with fl = 0.5 and m = - 4 . 7  (figures 23 and 24), which corresponds to 
linear averaging of  the upstream and downstream values of  the factor involving e in [47]. 

This approach may seem more satisfying than the previous one, in which an effective 
compressibility was assumed, in that no additional terms were hypothesized in [47]. There also 
appears to be minimal empiricism in [55], which can be justified mechanistically. However, the 
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Figure 22. Attempts to fit data with two values of fl in [54]. 6mm lead glass particles in water. 

averaging recipe is not unrelated to the "additional terms" hypotheses, as we shall see in the next 
section. 

A typical void fraction profile predicted from this theory is compared with the result, for the 
same initial conditions (a step jump from e = e0 to e = 1 at z = 500 mm), derived from continuity 
wave theory in figure 25. The form of  the leading edge of  the decompression wave is identical in 
both cases. However, the top of  the wave propagates into the packed bed at a slower speed when 
the discretized model is used. Just below the packed bed there is a rapid transition to a uniform 
void fraction, corresponding to point "¢"  in figure 12, which extends over to join the back end 
of  the "expansion" wave. 

3. 7. Force proportional to d2e/dz2----hypothesis 3 

By expanding the foregoing "averaging" method in a Taylor series, it can be related to 
hypotheses that represent an influence of  void fraction gradients on the forces acting on the 
particles. 

Consider, for example, particles in or near the stack, a distance kpbd apart. Focusing on one 
particle, the upstream and downstream void fractions will be computed at a spacing A = kpbd/2 
from that particle and the finite-difference equivalents of  the derivatives are 

de eu-~d [56] 
Oz 2A 

2O0 

5~ 

m 

1.2 1.4 1.6 1.8 

J fa/ J m/ 

Figure 23. Use of various values of ~ in [55]. 6mm lead glass particles in water. 
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Figure 24. Effect of averaging the exponent m on predicted wave velocities. 6mm lead glass particles in 
water: - - - ,  continuity wave theory. 

and 

632g /~u + ed -- 2e 
63Z2 -- A2 

Using these expressions in [54], we obtain 

63~ A2 63 2~ 
e,fr= fleu + (1 - - f l )ed=e + ( 2 f l  -- I ) A ~ -  q 63z 2; 2 oz  

while, if [55] is used and terms in (de/63z) 2 are neglected, the result is 

I A 0e 
e ~ = e "  1 +(2fl  - 1)mT~ z + - - - -  

mA2 632e J 
2e dz 2 "{'- " " " " 

[57] 

[58] 

[59] 
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Figure 25. Decompression wave: solid concentration profiles. - - - ,  Continuity wave theory; - - ,  
discretized model. 6mm lead glass particles in water; initial stack size: 100 layers of particles; situation 

after 2.4s. 
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Figure 26. Void fraction profile for decompression wave derived from [62]. 6mm lead glass in water. 
j /=  -80mm/s, Js = 3.9mm/s, jra/jmr= 1.49, v~. = 60mm/s, k 2 = 1. 

Using the values found previously (m = - 4 . 7 , / t  = 1/2), [59] reduces to 

g~47 = 8-47 I1  4"7A2 C32g 1 
2e dz 2 + " "  . [60] 

In or near the packed bed, A ~ kpbd/2 ,~ 0.8165d/2 and [60] becomes 

2 02e7 
~f~7 = ~-,7 1 -- k2d -~z2] [61] 

with k2 - 0.4. 
We may now use [61] to substitute in the final term in [47] and return to the Eulerian form [10], 

written as 

(OS =~- Cof)~3S ~ --(Of ~- Cof)t)f ~ : g(os- Of)~- 4 ~ -4"7CDsDf(J --1}s)lJ --Usl 1-- k2d 2 d2g~dz2/, [62]  

Substituting for v: and v / f rom [1] and [2], we obtain a differential equation which can be 
solved for e. The approach is to assume values of  Js and Jl in the frame of reference in which 
the wave is at rest and to integrate forward in z, starting with e = e0, de/dz = 0. For sets of 
unique combinations of js and Jl, the solution tends asymptotically to the equilibrium state " c "  
in figure 12. Otherwise, it veers off on an excursion to unrealistically high or low extremes of  e. 
The situation qualitatively resembles behavior near the bifurcation point shown in figure 13. 
Most of  the change in e again occurs over a few particle diameters, but there is no discontinuity 
in the slope of  the void fraction profile at the top of  the wave (figure 26). 

A set of  predicted wave speeds for different values of k2, neglecting both added mass and liquid 
inertia effects, is shown in figure 27 for one of the systems studied by Harvey (1991). When added 
mass and liquid inertia are added, the fit is slightly better, showing a greater reduction of wave 
speed as the fluid flux is increased (figure 28). 

3.8. Geometrical averaging--hypothesis 4 

Up to now we have accepted [1] and [2] as valid, even when the particle concentration changes 
significantly on the scale of the particles. As pointed out by Singh & Joseph (1991), this is not true. 
It is essentially the number density, and not the volume or area fraction occupied by particles, which 
should appear in the continuity equation. Let the particles each have an internal origin at a specified 
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Figure 27. Data for 6mm lead glass particles in water, compared with three theories. --- ,  Continuity wave 
theory; .-., [62] with various values of k 2 but neglecting added mass and fluid inertia; - - ,  discretized 

model. 

internal point (such as the centroid) and internal coordinates z' relative to this point. The true 
conservation law that replaces [1] when particles move in the z-direction is 

J, = vsn, [63] 

where Js is the "number flux" and n[z] is the number of centroids per unit volume (i.e. there 
are n dz per unit cross-sectional area in the interval dz). Js is constant in steady flow. From 
straightforward geometry, sketched in figure 29, the area fraction of particles at z is 

fz :~ 
0t[z] = A [ z ' l n [ z  - z'] dz ' ,  [641 

where A [z'] is the area of cross-section of a particle at the internal coordinate z'. zo' and zb' are 
the extreme values of z'  at the ends of the particle. For the present purposes we assume that the 
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Figure 28. Same as figure 27 but with all terms used in [62]. 
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C) f) 
Figure 29. Derivation of area fraction from number density. 

particles are identical and are all oriented the same way (or are spherical). Equation [64] represents 
a convolution between ~ and n. In general, we cannot replace ~ by n Vp, where Vp is the volume 
of one particle, unless n is a constant. 

If  n is expanded as a Taylor series about the point z, [64] may be written as 

fz , d2n ~z~, , dn ~ 'A 'z 'dz  + ~ z  2 | A z'2 ~[z]=nVp--dzz ". jz'~ -~-- dz'  + etc. [65] 

By making the natural choice that the origin of z'  is at the geometrical centroid of the particle, 
the term in dn/dz may be removed from [65]. Furthermore, we may define a "void fraction" based 
on the number density, 

(1 - e . ) = n V p ,  [66] 

so that the true continuity equation, obtained by multiplying [63] by Vp, is 

.~ = V v J s  = vs(1 - e.), [67] 

while the "void fraction" based on the "area fraction occupied by particles at z"  is defined as 

G = 1 - ~. [68] 

Then [65] may be reexpressed as 

O2en 1 /'6 , z '2 
G = ~. + ~ ~ J:;, A -~- dz'  + etc. [69] 

The coefficient multiplying 02e./Oz 2 in [69] is a purely geometrical property of the particles. For 
spheres it turns out to be dZ/40 and [64] becomes, ignoring higher order terms, 

d 2 6~2gn 
e. = e. 4- 4---0 c3z ----7" [70] 

Now, when we solve for the particle motion using [3], we may use [67] to eliminate v, on the 
LHS and obtain a differential equation for ~.. However, the key questions now are which e is to 
be used in constitutive laws such as [5] and [6] and how v I is to be computed for use in these 
equations (if indeed they can still be used). 

One assumption, which is relatively simple to use, is based on substituting [46] in [10], arguing 
that j is constant throughout the flow and can be computed "somewhere", and claiming that 
the factor e-4.7 should involve the area fraction G. The solution variable is e., so e-4.7 should be 
replaced by 

( q'u ¢7Z" ] d2 02/3n~-4"7 "~ /3n4'7 [ 4"7d2 01~"140e, 0z2_]" G -4'7= e. + -z-~ -7--v. 1 [711 
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The upshot of  making the approximation in [71] is entirely equivalent to what was done in [61], 
except that we now have a prediction of  the value of  k2: 

4.7 
k2 = 40e---~" [721 

At the top of  the wave, where e, changes very rapidly and the wave speed appears to be controlled, 
e, ,-, e0 "-, 0.4 and [72] yields 

k2 ",, 0.29, [73] 

which seems a reasonable choice in figure 27, but, as we shall see, does not necessarily work for 
all fluid-particle combinations. 

Of  course, [71] represents an approximation and it might be more satisfactory, when e changes 
rapidly with z, to use the entire convolution in [64], as was done by Singh & Joseph (1991) in an 
investigation of  wave propagat ion in a two-dimensional (planar) fluidized bed but is difficult to 
incorporate into the numerical schemes used here. An intermediate approach is not to use the 
approximation in [71] but to use [70] to substitute directly for e in the drag law. There are still some 
interesting questions about  which of  the e s in the original theory are to be replaced by ea. 
For  example, if it is only the e in [5] that is to be modified we can identify e in [1] and [2] as e, 
and express [10] as 

[ j2 J~ld~'83J dz (p, + Cp:) (~_ ~)~ + (p :+  Cp:) 

• 3 ~ (v:-v,)lv:-v,l( d 2 d2,8"~ -2'7 
= g ( p ,  -- p/) -t- -~ t.,o,p/ d _s + -~  -~z2, ] . [74] 

The method of  solution is now to solve [74] for d2e/dz 2 and proceed to solve for e as a function 
of  z, starting from z = 0, de/dz = 0, e = e0. Some results of  this process are shown in figure 30 and 
show the emergence of  an interesting "cliff" at jya/j,~y ~ - 1.45, for which there is some empirical 
support. 

An alternative approach might be based on a modification of  the final term in [47], so that the 
last term in [74] would be replaced by 

3 ~ (j-- v,)lj-- v,l ( d ~ d2e'y 4'7 
t.o,p: d \ e  + 4-0 -d-fiz2 J " [751 
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Figure 30. Data for 6mm lead glass particles in water compared with several theories. - - - ,  continuity 
wave theory; , discretized model; "", [75]; - - . - - ,  [74]. 
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The result of using this approach on 6 mm lead glass particles fluidized with water is shown in 
figure 30, where the agreement with these data appears not to be influenced much by the choice 
of either method. 

The appeal of this theory is that it is based on an "assertion", that the area fraction is the 
appropriate "e"  to use in the drag law, and does not contain adjustable empirical parameters. 
The key remaining question, which we will investigate in section 4, is how well it works for other 
fluid-particle systems. 

3.9. The limit Vd,.~O 
A major feature of the experimental results is that, above a certain value of the applied flux, the 

particle stack remains static and there are no decompression waves. We denote this critical fluid 
flux by (J:,)0; it corresponds to the situation where particles at the bottom of the stack are just 
supported against gravity by hydrodynamic forces. This situation could be simpler to analyze than 
wave propagation, since the dynamics of the particles are not involved. 

If  we neglect the fluid inertia terms in [10], what remains is merely the balance between the "drag" 
term and the submerged weight of the particles. For Harvey's discretized model this balance may 
be expressed as 

3 (j/a) 2 [76] 
g ( P "  - Pf) = 4 CDs13~ff4"7pf d 

with 

~O4.7 -4.7 
e e _ : . 7  " + 1 2 [77] 

At incipient fluidization a similar balance yields 

3 C e-47~ j i f  
g ( P s -  Pf)  = ~ Os 0 Y f - - d .  [78] 

The drag coefficients in [76] and [78] depend on Re. For large Re, the Co, are equal and we obtain 

(Jfa)° -- ( l +--~°47) -'/2 [79] 

Jm: - \ 

which, for eo = 0.4, is equivalent to 

(Jf,)o= 1.405. [80] 
Jm: 

On the other hand, at very low Re, where Cnoc 1/Re, this ratio is close to 2. 
If  we adopt the geometrical averaging approach (hypothesis 4) and still neglect fluid inertia 

effects, the result is 

eefr=( 1 l-e0)2 = 1+e°~0"72 [81] 

and we get, at high Re, 

(Jfa)o (0'7"~ 4"7/2 
Jim ~- \ ~ . ]  = 3.725, [82] 

which is too large. 
It would appear to be more reasonable not to neglect the liquid inertia term in [10] and to increase 

the total hydrodynamic force by the amount - (1  + C)p:v:dv:/dz, making reasonable estimates for 
the effective velocity and velocity gradient. This, of course, assumes that effects are additive, which 
is not necessarily so. (In a separate study, we have used boundary layer theory to estimate the drag 
on a particle in a converging fluid flow and found that at high Re there is a decrease in the drag 
force greater than the contribution from the "added mass" term involving C !) Since the mean fluid 
velocity outside the particle stack is j:, and the mean velocity inside is jr,~Co, reasonable estimates 
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for the parameters are 

and 

vf-J/" (1 + 1 - 3 -  [831 

The result is a force (negative and therefore upward) on each (average) particle, per unit particle 
volume, of 

--(1 + C) PlJ}~ (~o + 1)(1 -- eo) 
d 2~  

which is equal to -3.94p/j]Jd for C - - 1 / 2  and e.0 = 0.4. 
An alternative estimate of this "accelerational" term may be obtained from the potential flow 

analysis of Wallis (1989) who showed that there is an effective pressure, or force per unit total area, 
on the surface of discontinuity between ~ = 1 and ~ = e.0 equal to 

3 ( , - ~ y  
-P"  = k - - i f - )  [851 

If  this force is distributed over one layer of particles occupying an area fraction (1 - e,0) with a 
number per unit area of (1 - 8)/(nd~/4), the force per unit volume on these particles is 

3(~p~o)  2 .2 ndz 1 6 
A = - - 4  \ -o .. Pf.lf= ~ 1-,%rid 3 

= -4.2&j}=/d (if ~0 = 0.4), [86] 

which is close to the previous value and acting upwards (as indicated by the negative sign). 
This compares with the following "forces" calculated at high Re (i.e. Co,---0.44) by using the 
previous approaches: 

Discretized model, 

fz = --~ (0.44) + 1 = -- 12.4 P/J]a [87] 
d 

and 

geometrical averaging model, 

f , _ ( ) ( ) 3  P/J~a = - 1 .76 P/J~" [88] " ' = - - 4  "0"44" '0"7-47" d d ' 

whereas, at incipient fluidization 

~ (0,44)0,4_4.7 pfj2f "2 P/ J m: [89] f 2 = -  d = - 2 4 " 5  d 

If  we choose to add the "effects" in [86] and [87] and compare with [89], the result is 

(+o)o=( 2_45 
j,,,: \12.4 + 4.2J = 1.21, [90] 

whereas adding [86] to [88] leads to 

(J:~)o=(. 24.5 .~,/2 
Jmf kl.76 + 4.2] ----- 2.03, [91] 

which is a large change from [82]. However, both [90] and [91] are within the range of observations. 
Another "effect" that might be invoked is the "effective compressibility". The jump in void 
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fraction from e0 to 1 over a distance comparable to the particle diameter might be represented by 
a void fraction gradient of order 

de 1 -- eo 
dz d ' [92] 

which, if used in [34], would reduce the "drag"  component by the factor [1 - k  (1 - s0)] (suggesting 
that k cannot be much larger than ~ 1). A similar argument predicts that the drag force on the 
particle layer at the top of  a uniformly fluidized bed should be increased by a factor 1 + k(l  - 5 ) .  
It is still an open question what effective void fraction should be used to compute the "force" which 
is to be modified by these factors. At low Re, because reversing the flow changes the sign of all 
velocities, surface stresses and pressure differences, the net drag force must clearly be the same 
whatever the sign of the voidage jump or gradient and it would appear that there can be no 
"effective compressibility" if the particles are at rest. The "discretized model" and "geometrical 
averaging" approach also lead to zero "effective compressibility" and both predict similar forces 
for particle layers on the top and bottom of a stationary particle stack through which fluid is 
flowing. 

4. C O M P A R I S O N S  WITH E X P E R I M E N T A L  DATA 

4.1. Force measurements 

Apart from measurements of  the expansion characteristics of uniform fluidized beds, from which 
results resembling [12] can be obtained and used to justify recipes such as [5]-[9], there have been 
few direct measurements of  the effect of neighboring particles on the hydrodynamic force exerted 
on one particle. This is particularly true of non-uniform assemblies in which there are gradients 
or jumps in the void fraction. 

Rowe & Henwood (1961) measured the drag force on a particle in a close-packed assembly and 
found it to be 73 times as great as on a single particle immersed in the same fluid flux. They also 
measured the force on a single particle as a function of its distance upstream or downstream from 
an empty lattice point in the surface layer of an assembly. Their interpretation of their data 
appeared to support the "compressibility" hypothesis and was used by Wallis (1962) to estimate 
k -~ 1.4. However, Harvey (1991) carefully examined the original data and concluded that there 
was no clear evidence for such a hypothesis. 

Harvey (1991) used gravity to measure the force on particles in the upstream or downstream 
layer of  a randomly packed assembly. To study the upstream layer he stacked glass particles 
(Ps = 2900 kg/m 3) of 1/16" dia at the top of  a vertical column, as at the start of a decompression 
wave experiment. He then increased the water flux until a number of steel balls (Ps = 7980 kg/m 3) 
of the same diameter could be suspended and laid down as a surface layer on the outside of the 
assembly of glass particles. The water flux was then reduced in small steps and it was noted how 
many steel balls fell off at each stage. A histogram was then developed of the number of  balls 
detaching as a function ofjla/j,, j and it was determined that, on the average, "rainoff" occurred 
at (Jl~/J,,I)o = 2.01, with a standard deviation of 0.56. 

To measure the force on the downstream layer of  an assembly, Harvey established a stationary 
bed of copper particles (p, = 8600 kg/m 3, d = 1/16") at the bottom of a cylindrical column and 
settled a layer of  aluminum particles (pc = 2800 kg/m 3) of  the same diameter on top of them. 
He observed that the lighter particles were first set in motion at an average value (JJ~/Jmi)= 1.83 
with a standard deviation of 0.19. In other words, contrary to Rowe & Henwood's 
(1961) contention that the top layer of fluidized bed lifts off before the entire bed fluidizes, it took 
roughly 1.83 times the fluid flux to lift the surface particles than would be necessary to fluidize a 
bed consisting entirely of  aluminum spheres of the same diameter. Harvey (1991) concluded that 
there was little direct evidence for a significant "compressibility" effect in a bed of stationary 
particles. 

4.2. The limit Vd,.~O 

It might be expected that careful measurements of the fluid flux at which particles are just able 
to detach from the bottom of  the stack (i.e. vj, is very small) would provide good tests of the 
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Figure 31. Decompression wave: 420#m lead glass particles in water. A ttuidized bed is established below 
the wave and the gap between the top of  this bed and the bot tom of  the stack is varied ( p f l p s  = 2.9). - - ,  

Discretized model; - - - ,  continuity wave theory; - . - ,  [74]. 

theories presented in section 3.9. Unfortunately, there are very few accurate data available in this 
region. 

Buysman & Peersman (1967) studied the "rainoff"  point and measured the pressure drop across 
the particle stack. They reported the ratio of  this pressure drop to the buoyant weight of the 
particles. Using standard correlations for the pressure drop in packed beds it is possible to use their 
data to predict the ratio (Jla)o/Jmz For glass beads of  180-600/~m dia in air and E = 0.4, this ratio 
varies from 2.1 to 1.6, while for 600-1000 #m dia glass beads in water it ranges from 1.58 to 1.53, 
in agreement with our present results. 

Buysman & Peersman (1967) also were able to compact the bed to values of E as low as 0.32, 
introducing a new variable worthy of further study. They discuss the influence of particle-particle 
forces, particularly on compressed beds of  small particles in air, where electrostatic and capillary 
forces may be significant. In our experiments on relatively large particles in water the mechanical 
interparticle forces are expected to dominate and we were careful not to use excessive pressure 
drop, vibration or other means that can compact the bed below e ~ 0.4. Uncertainty about some 
of these effects could explain some scatter in the available data and deserves a more thorough 
future study. 

Most of  the evidence for the "rainoff"  point is derived by extrapolating decompression wave 
data. The scatter in such results does not allow discrimination between the more successful theories. 
Moreover, there are some experimental problems in approaching the limit Vd~.~0, which depends 
on how firmly the particle stack was packed (e.g. tapping the tube while the stack is compressed 
may make it compact more tightly), how constant the fluid flow is, the velocity profile and degree 
of  turbulence in the oncoming flow and so on. At low wave velocities, propagation may be quite 
irregular, perhaps coming to rest for a time and recommencing as a chance vibration or other 
disturbance causes particles to be dislodged again. Such erratic behavior might be inherent if 
predictions like those displayed in figure 30 are qualitatively correct, with the wave velocity being 
multi-valued or insensitive to Jla near the limit of interest. Particular difficulty occurs with small 
particles which may either not fall at all or fall off as multi-particle "chunks",  leading to a 
multi-dimensional flow pattern. 

In an attempt to promote one-dimensional behavior in a system of  small (420/~m dia) glass 
balls in water, experiments were run with a fluidized bed established just beneath the particle stack 
(figure 31). The wave speed was observed to depend on the size of  the gap between the top of  the 
fluidized bed and the bottom of the particle stack (both of  which propagate upwards during the 
experiment with the "gap"  in which the decompression wave occurs continuously narrowing). 
The limiting value, (Jla)0, depends significantly on the gap size. 
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Figure 32. Decompression wave speed for 2.4ram lead shot in water, Re~ = 2250. - - ,  Discretized model; 
- - . - - ,  [74]; A ,  data of DiFelice (personal communication). 

Qualitatively, (J/a)O/Jmy is generally lower at higher Re (figure 5), as all the theories predict, 
and the limit predicted in [80] appears reasonable. Equation [90] is probably too low and [91] 
too high, but the data are neither extensive enough nor precise enough to lead to unequivocal 
conclusions. 

4.3. Decompression wave velocities 

Comparisons that were presented in section 3 appeared to show that data were best represented 
by the discretized model, a force proportional to b2e/bz2 or by the geometrical averaging approach, 
all of which are approximately equivalent when j/, is close to Jm/- These approaches will now be 
compared with further data, the major parameters being the particle diameter and the solid/fluid 
density ratio. 

Figure 32 presents results for lead shot fluidized by water (p,/p:= 11, d = 2.4 ram). Both the 
discretized model and the d28/dz 2 effect theory, using [74], are close to the data nearjfQ/j,./= 1 but 
wave velocities are overpredicted as j/Q is increased. 
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Figure 33. 0.325mm copper spheres in water. , Discretized model; - - . - - ,  [74]; " ' ,  [62] and [73]; 
, continuity wave theory. From DiFelice (personal communication): O,  one-dimensional wave; 0 ,  

three-dimensional wave. 
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Figure 34.0.65mm copper spheres in water. , Discretized model; -- .-- ,  [74]. From DiFelice (personal 
communication): ©, one-dimensional wave; @, three-dimensional wave. 

Figure 33 shows a similar comparison with data for copper spheres fluidized with water 
(ps/p:= 8.9, d =0.325 mm). The discretized model is close to the data but the geometrical 
averaging approach, using [74], or the 32e/az2 effect theory, with k2 = 0.29, significantly overpredict 
the data, as in figure 32. 

Figure 34 presents results for lead glass spheres in water (ps/p:= 2.9, d = 0.65 mm). Though the 
points appear to form a continuous curve, many of  the data correspond to three-dimensional 
waves. Neither of  the theories is particularly accurate. Our results for 1 and 2 mm lead glass 
particles are similar. As the diameter is further decreased, these trends continue (figure 31). 

Results for the lowest density ratio (ps/p:= 2.5) and highest Re (Reoo = 4500, (Res)~/= 490) that 
we have tested are presented in figure 35. As in the similar comparisons in figure 30, the prediction 
using [74] appears to present a lower bound to the data, but could be made to pass optimally 
through the points by decreasing jm/by a few percent ( ~  5%), which is within the precision of  both 
measurement and theory for the minimum fluidization flux. 

Since smaller particles and low density ratios (low Re) lead to some of  the biggest deviations 
between theory and experiment, we reinvestigated the infuence of  the "averaging exponent",  rn, 
in [55]. For  425/zm lead glass particles in water (figure 36) no clear resolution is achieved by 
choosing any particular value of  m. 
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Figure 35. 8mm soda glass particles (Ps = 2500kg/m3) • - - - ,  Continuity wave theory; - -  
model; -- .-- ,  [74]. Re~ = 4500. 

• discretized 
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Figure 36. Effect of averaging exponent rn on predicted wave velocities: 425/~m lead glass particles. 
• Three-dimensional data; ©, one-dimensional data; --- ,  continuity wave theory. 

5. DISCUSSION AND CONCLUSIONS 

Decompression wave data provide a test of constitutive equations for dispersed particle systems. 
It is impossible to predict these phenomena from current continuum theories that use interphase 
drag forces based solely on relative velocity and local void fraction. 

The most successful hypotheses for predicting the velocity of these waves, as long as they remain 
one-dimensional, are: 

• A "discretized" model, based on non-linear averaging of upstream and down- 
stream void fraction at some specified spacing scaled by the particle size (Harvey 
1991). 

• An additional force component proportional to  32,~/(~z 2. 
• A geometrical averaging approach that corrects the effective area-averaged void 

fraction when changes occur on the scale of the particles (Singh & Joseph 1991). 

These theories have been shown to be closely related and approximately compatible. They fit 
a range of decompression wave data quite well but show significant deviations (which we have not 
tried to fit empirically) at high values of density ratio (pJp:  >i 10) and low Re~ (~< 100). They have 
not been used in this paper to predict the transition to three-dimensional behavior that occurs with 
small particles and small density ratios, roughly corresponding to the range of "particulate" or 
non-bubbling fluidization, though Singh & Joseph (1991) have used a similar approach to develop 
a criterion resembling that of Foscolo & Gibilaro (1984). 

The decompression wave data, and subsidiary experiments to measure forces on particles at 
interfaces, provide less favorable support for the hypothesis of an "effective compressibility" or a 
force component that is proportional to the void fraction gradient, de/t3z. Although, mathemat- 
ically, such an effect can qualitatively explain the results, the required compressibility would be 
extraordinarily sensitive to void fraction. In a fluidized bed, however, in which more velocity 
fluctuations are likely to build up than are induced in a decompression wave, there may be an 
additional mechanism for such an effect, as envisaged by Batchelor (1988). 

One-dimensional decompression waves occur for a range of physical properties generally 
associated with "aggregative", "bubbling" or "slugging" fluidization and could represent the 
"rainoff" process at the bottom of a slug of particles in such a system. The three-dimensional 
instability that is observed, for example with glass beads of diameter less than about 4 mm in water, 
could be related to the mechanism that breaks up "bubbles" in "particulate" fluidized beds. Such 
phenomena were not predicted from the analysis in this paper. Nor do we have an explanation 
for why [35] appears to describe the decompression wave speed whenj/,/jm: ---, 1, even when the waves 
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appear three-dimensional, as reported in several papers by Gibilaro et al. (1989, 1990). Perhaps the 
initial peeling off of particles from the compressed stack is governed by some local phenomena that 
are independent of the structure of the flow below. 

In the comparisons that we have presented between data and predictions, the "theoretical" values 
are entirely theoretical (i.e. calculated values ofjmf and vo~ are used) while experimental data are 
reduced using measured values ofj,,f. In some cases this makes little difference; e.g. for 6 mm lead 
glass in water we measured jmf= 54.9 mm/s and calculated 54.6 mm/s and for 8 mm soda glass 
we measured jms= 63.5 mm/s and calculated 61 mm/s. However, for 420/~m lead glass in water 
(figure 31) we measured jmf= 3.7 mm/s and computed 2.1 mm/s. Attempts to "correct" the data 
in figure 31 by mixing theoretical and experimental values merely make the comparison worse and 
do not remove the basic qualitative disagreements. For 2.44 mm lead shot in water we measured 
jmf= 84 mm/s and computed 70.2 mm/s; if this discrepancy is used to change the scale on the 
abscissa in figure 32, the agreement with theory is much improved at lower wave speeds. A similar 
"correction" of about 20% could be applied to figure 33, moving the data between the theoretical 
curves represented there. In no case, however, do we have experimental values of vo~ to justify 
changes in the scale of the ordinate. All in all, we believe the comparisons we have shown are the 
fairest method of representation. Errors as high as 50% in predicting j~f at low Re are indicative 
of the state-of-the-art and argue against expectations of greater precision in representing 
decompression wave results. Sources of uncertainty include non-uniformity, out-of-roundness and 
roughness of the particles and variations in void fraction in a packed bed, depending on how it 
is created. 
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